Contact Information	Massachusetts Institute of Technology (801)828-5740 Department of Aeronautics and Astronautics		
Research Interests	Uncertainty Quantification (UQ), Climate and Earth System Research, Scientific Computing, Machine Learning, Data Assimilation.		
Education	Department of Mathematics, Oregon State University Ph.D. in Mathematics Focus: Data Assimilation, UQ in Dynamical Systems	2016-2021	
	Department of Mathematics, University of Utah B.S. in Mathematics B.S. in Political Science	2012-2016	
Appointments	Postdoctoral Research Assistant Massachusetts Institute of Technology, Cambridge, MA Uncertainty Quantification techniques for large scale data-driven problems. Reference: Youssef Marzouk ymarz@mit.edu	2021-Present	
	Graduate Research Assistant Oregon State University, Corvallis, OR Data Assimilation techniques for nonlinear advection- diffusion equations with stochastic wave velocity. Reference: Juan M. Restrepo juan.restrepo@ornl.gov	2016-2021	
	SIParCS Intern National Center for Atmospheric Research, Boulder, CO Analysis of the ocean boundary layer depth using probabilistic machine learning. Reference: David John Gagne dgagne@ucar.edu	2020 - 2021	
	Graduate Research Assistant Los Alamos National Laboratory, Los Alamos, NM Bayesian inference in data-driven analysis of annual to decadal sea surface temperature anomaly statistics. Reference: Nathan Urban nurban@bnl.gov	2018-2019	
	Undergraduate Research Assistant University of Utah, Salt Lake City, UT Data-driven inverse models modeling Arctic sea ice. Reference: Kenneth M. Golden golden@math.utah.edu	2014-2016	
PUBLICATIONS	D. Foster , J.M. Restrepo, Dynamic Likelihood Filter: A Data Assimilation Scheme that Exploits Hyperbolicity in Wave Problems to Propagate Observations, In preparation, 2020.		
	D. Foster , David John Gagne II, Daniel B. Whitt, Probabilistic Macl Estimation of Ocean Mixed Layer Depth from Dense Satellite and Spars servations, Submitted to <i>Journal of Advances in Modeling Earth System</i>	se In-Situ Ob-	

		ian Frost-LaPlante, Collin Victor, J.M. Restrepo, Gradient tion, Accepted to <i>Physical Review E</i> , 2021.	sensing via		
	D. Foster , D. Comeau, and N. M. Urban, A Bayesian Approach to Regional Decadal Predictability: Sparse Parameter Estimation in High-Dimensional Linear Inverse Models of High-Latitude Sea Surface Temperature Variability, <i>J. Climate</i> , 33, 6065-6081.				
	C. Strong, D. Foster , E. Cherkaev, I. Eisenman, K.M. Golden, On the definition and analysis of marginal ice zone width, <i>Journal of Atmospheric and Oceanic Technology</i> , Vol. 34, 2017.				
Invited Presentations	Dynamic Likelihood Filter: A Data Assimilation Scheme that Exploits Hyperbolicity in Wave Problems to Propagate Observations, D. Foster , J.M. Restrepo. 2021 Spring Meeting of the American Physical Society. Oral Presentation, March 2021.				
	Dynamic Likelihood Filter: A Data Assimilation Scheme that Exploits Hyperbolicity in Wave Problems to Propagate Observations, D. Foster , J.M. Restrepo. 2020 Fall Meeting of the American Geophysical Union. Oral Presentation, December 2020.				
	Probabilistic Machine Learning Estimation of Ocean Mixed Layer Depth from Dense Satellite and Sparse In-Situ Observations, D. Foster , D.B. Whitt, David John Gagne II, 101st American Meteorological Society Annual Meeting, January 2021.				
	A Bayesian approach to regional decadal predictability: Sparse parameter estimation in high-dimensional linear inverse models of high-latitude sea surface temperature variabil- ity, D. Foster , N. Urban, D. Comeau. 2019 Fall Meeting of the American Geophysical Union. Poster Presentation, December 2020.				
	Bayesian Inference in Linear Inverse Problems with Applications to Sea Surface Tem- perature Anomalies, D. Foster , N. Urban, D. Comeau. 2019 Oregon State Graduate Appreciation. Poster Presentation, March 2019.				
	Decadal Predictability of Global Sea Surface Temperature Anomalies, D. Foster , N. Urban, D. Comeau. 2018 Oregon State Applied Math and Computation Seminar, October 2018.				
Relevant Skills	Uncertainty Quantification	Monte Carlo Methods: (Adaptive) MCMC, HMC, LMC, Bayesian Statistics, Stochastic (PDE) Modeling, Gaussian Polynomial Chaos, Stochastic Galerkin and Collocation M			
	Machine Learning	Dense, Convolutional, Recurrent, Adversarial, and Generative NNs Bayesian NNs, Probabilistic Graphical Models, Weight Uncertainty			
	Programming Languages 7 Years Experience with Python, MATLAB, Mathematica, R, Julia 4 Years Experience with C, C++, Fortran, FEniCS (Finite Element) 3 Years Experience with OpenMP, MPI, OpenCL, TensorFlow Misc. Software: Stan, Git, Docker, scikit-learn, Atom, Visual Studio				
Honors and Awards	Provost Disting ARCS (Achiever	holarship, University of Utah guished Scholarship, Oregon State University nent Rewards for College Scientists) Foundation Scholar Chapter Certificate of Recognition 2020	2012-2016 2016-2017 2016-2019 2020		

Professional Affiliations	American Physical Society (APS) Member	2019-Present
	American Geophysical Union (AGU) Member Candidate: Secretary for Nonlinear Geophysics	2019-Present 2020
	Society for Industrial and Applied Mathematics (SIAM) Member	2011-Present
	Oregon State University Chapter of SIAM Treasurer Organized payments to speakers and vendors.	2016-2018
	Prepared end-of-year financial reports. President Organized Speaker visits. Created and implemented Python language training. Recieved SIAM Student Chapter Certificate of Recogniti	2018-2020 on
Teaching Experience	Graduate Teaching Assistant Instructor • Differential, Integral Calculus • Integral Calculus • Vector Calculus • Integral Calculus • Differential Equations • Integral Calculus • Linear Algebra • Discrete Mathematics	